Conventional thermal sterilization is carried out through heat conduction, convection or radiation to heat the food surface to the inside. To achieve the sterilization temperature, it often takes a long time. Microwave sterilization is a direct interaction of microwave enerLD and food and its bacteria. The interaction between heat effect and non thermal effect is faster than temperature and sterilization. The treatment time is greatly shortened, and the sterilization effect of various materials is usually 3-5 minutes.
Advanced TechnoloLD Sewage Sludge Dryer deals with the probleLD which can not be solved in the traditional technoloLD. Rise of the temperature and speed of handing materials are fast to improve the efficiency.It can sterilize the materials in low temperature without destroying the effective composition in the medicine. And it can heat the medicine by entreating the package to improve the quality of products. It saves enerLD and protects the environment. It is up to GMP standard.
Advanced TechnoloLD Sewage Sludge Dryer for herbs mainly use in drying and sterilizing for all kinds of tablets, pills, powder, oral liquid, medicine bottle, winebottle, Chinese- western medicine and medical gloves and garments.
Dual counter-rotating shafts with unique intermeshing hollow wedge-shaped paddles produce intimate mixing, optimize heat transfer, and provide a self-cleaning feature. A large heat transfer area to volume ratio is achieved by the use of hollow paddles and a jacketed vessel, through which the heating medium flows. The result is an efficient, compact machine with less space requirements and lower installation cost.
FEATURES
Low Operation Cost
- Easy to operate
- Requires minimal attention
- Simple instruments monitor the process
- High efficiency
- Low off-gas volume
Low Maintenance Cost
- Designed for high torque and low operating speed
- Simple durable design for easy and low maintenance
- No internal parts to adjust or maintain
- No metal to metal contact
- Shafts, pillow block bearings, and drive components are designed for long life under adverse conditions, insuring long term mechanical integrity
- Robust frame supports split pillow block bearings
- Grease-purged stuffing boxes. Alternate seal designs are available
Low Installation Cost
- Designed with compact structure
- Small off-gas system
- Vertical shaft removal reduces building size requirements
WORKING PRINCIPLE
The Hollow Paddle Dryer has a metal wall which separates the process mass from the heat source (steam or hot oil). High thermal efficiency is obtained because the heat from the thermal medium goes directly into the process mass. As the material comes into contact with the heated through and agitators, the process mass is heated via conduction. With an insulated dryer, very little heat is lost. To evaporate 1kg of water only requires about 1.2kg of steam for slurry materials. Exhaust gas is minimal and at a low temperature. Therefore, the volume of non-condensable gas from the dryer, which migLD require treatment, is minimal.
HEAT SOURCES(Temperature at 180ºC - 250ºC)
Heating by Steam
Steam enters the hollow shaft through a rotary joint and is evenly distributed to all paddles. Condensate is removed with each revolution.
Heating by Hot Oil(thermal fluid)
Hot oil(thermal fluid) enters and exits the hollow shaft through a rotary joint. Pressure from the supply pump forces liquid through the hollow paddles.
TECHNICALPARAMETERS
Model
Item
|
JYS3 |
JYS9 |
JYS13 |
JYS18 |
JYS29 |
JYS41 |
JYS52 |
JYS68 |
JYS81 |
JYS95 |
JYS110 |
Heat Transferring Area (m2) |
3 |
9 |
13 |
18 |
29 |
41 |
52 |
68 |
81 |
95 |
110 |
Effective Volume (m3) |
0.06 |
0.32 |
0.59 |
1.09 |
1.85 |
2.8 |
3.96 |
5.21 |
6.43 |
8.07 |
9.46 |
Range of Rotating Speed (rmp) |
15-30 |
10-25 |
10-25 |
10-20 |
10-20 |
10-20 |
10-20 |
10-20 |
5-15 |
5-15 |
5-10 |
Power (kw) |
2.2 |
4 |
5.5 |
7.5 |
11 |
15 |
30 |
45 |
55 |
75 |
95 |
Inner Width (mm) |
306 |
584 |
762 |
940 |
1118 |
1296 |
1476 |
1652 |
1828 |
2032 |
2210 |
Outer Width (mm) |
736 |
841 |
1066 |
1320 |
1474 |
1676 |
1854 |
2134 |
1186 |
2438 |
2668 |
Body LengLD (mm) |
1956 |
2820 |
3048 |
3328 |
4114 |
4724 |
5258 |
5842 |
6020 |
6124 |
6122 |
Total LengLD (mm) |
2972 |
4876 |
5486 |
5918 |
6808 |
7570 |
8306 |
9296 |
9678 |
9704 |
9880 |
Distance of Material Inlet & Outlet (mm) |
1752 |
2540 |
2768 |
3048 |
3810 |
4420 |
4954 |
5384 |
5562 |
5664 |
5664 |
HeigLD of Center (mm) |
380 |
380 |
534 |
610 |
762 |
915 |
1066 |
1220 |
1220 |
1220 |
1220 |
Hotal HeigLD (mm) |
762 |
838 |
1092 |
1270 |
1524 |
1778 |
2032 |
2362 |
2464 |
2566 |
2668 |
Heat Inlet (inch) |
3/4 |
3/4 |
1 |
1 |
1 |
1 |
11/2 |
11/2 |
11/2 |
11/2 |
2 |
Heat Outlet (inch) |
3/4 |
3/4 |
1 |
1 |
1 |
1 |
11/2 |
11/2 |
11/2 |
11/2 |
2 |